
Industrial Control System Honeypot
Group May1601

Team Aashwatth Agarwal, Dan Borgerding, Jon Hope, Nik Kinkel, Jon Osborne, Korbin Stich

Advisor Dr. Doug Jacobson Client Alliant Energy

Introduction

Background

Supervisory Control and Data Acquisition (SCADA) systems play a vital role in maintain-
ing and controlling critical infrastructure such as water treatment plants, oil pipelines, HVAC
Systems, and the power grid. The societal importance of these services makes them a high-
value target for well-funded, highly-skilled adversaries who increasingly turn to digital and
electronic attack vectors, exploiting old and outdated protocols that were never designed to
be exposed to the public internet. Thus, rapid intrusion detection and response is crucial for
safeguarding SCADA networks.

A honeypot (a system designed to mimic a legitimate protocol, e.g. SSH, coerce an attacker
into interacting with it, and then report attacker activity to an administrator) is an old and
well-understood approach to detecting network intruders.

The Problem

Our client, Alliant Energy, requested many small, low-maintenance honeypot systems, each
capable of speaking multiple network protocols (both SCADA and non-SCADA), able to log
to many different backends, and able to sniff local network traffic for anomalies, to place
inside each of their 28 electrical substations.

Unfortunately, many mainstream honeypot implementations have a number of problems that
make them unsuitable for deployment in Alliant’s substations, including:

•Unsafe Languages: Many existing
honeypots rely on code written in languages
without memory- or type-safety,
unacceptable for a high-security
environment.

• Single-Protocol: Most honeypots are
designed to speak only a single protocol.

•Complex Deployment: Open source
honepots are generally not designed to be
deployed, updated, and configured en masse.

•Expensive Hardware: Commercial
honeypots are too expensive to place in
multiple locations across many subnets.

Solution

We designed a honeypot plugin framework (Figure 2) to enforce high-security process iso-
lation, extreme extensibility, and easy and comprehensive testing. The system is tailored to
run on Raspberry Pi consumer hardware and is cheap enough to buy in quantity, while still
being powerful enough to run an Intrusion Detection System (IDS) capable of watching lo-
cal network traffic for anomalies. Finally, we delivered a set of configuration management
utilities that allow our client to deploy to many different locations and update all devices in a
single-step.

Project Requirements

Functional Non-Functional

Low-interaction SSH, HTTP/HTTPS and
DNP3 honeypots

Low maintenance

Minimal IDS Low power consumption

One-step mass deployment and remote
management

Cheap

Highly extensible Withstand harsh substation environment

Concept
Network
Traffic

Incoming
Traffic

Sniffed
Traffic

Public
Interface

Snort
IDS

SSH
Admin

Honeypot
Framework

Snort Alerts

Honeypot Alerts

Figure 1: High Level Design

Each device has two network interfaces: one in promiscuous mode forwarding local network
traffic to an internal IDS, and another forwarding incoming traffic to the honeypot plugin sys-
tem. Local device firewalls, administrator keys, package dependencies, and other site-specific
artifacts are setup globally through the Ansible configuration management system.

Plugin Framework Design

SSH

HTTP

HTTPS

DNP3

Splunk

Syslog

Text File

S3

Controller

Custom
Honeypot

Custom
Logger

Application-specific alerts broadcasted to loggers

Figure 2: Pluggable Honeypot and Logging Framework

Figure 2 shows the basic architecture of the honeypot plugin framework. Both honeypot
and logging plugins run as separate processes and are completely isolated from one another.
Communication is done via a message passing protocol, where honeypots submit events to
the controller, and the controller then broadcasts the event to all logger plugins.

New plugins need only implement a simple, two-function interface to be automatically in-
tegrated into the broader plugin system. This approach means that plugins for new protocols
and logging backends can be developed rapidly, tested in isolation, and integrated into the
whole system easily.

Functional Modules

Component Technical Details

Plugin Framework Controller Go programming language. Manages child
honeypot and logger subprocesses, coordi-
nates communication over messaging inter-
face (localhost TCP or UNIX sockets).

Honeypot Plugins Go programming language. Mimics legiti-
mate network protocol handshakes (e.g. SSH,
DNP3), collects network activity metadata,
and sends to controller.

Logger Plugins Go programming language. Receives alerts
from controller as a byte string and submits
to particular backend (e.g. local database, re-
mote logging endpoint).

Intrusion Detection System Industry-standard Snort IDS. Configured with
custom ruleset designed for small substation
SCADA network. Pushes alerts to remote
endpoint.

Configuration Management Ansible Provisioning Software. Variable ar-
guments/paremeters allow administrators to
configure and deploy the honeypot system to
multiple locations.

Testing

Strategy

Unit Testing
– Each honeypot plugin tested in isolation
– Failures, crashes, and malicious input

simulated for controller
– Isolated design components leads to ef-

fective functional-style testing

Integration Testing
– Each honeypot protocol connected to,

used, log output verified
– Real-world attacks simulated
– Stress-tested for high traffic volume
– Automatic streamlined VM Provision-

ing

Environment

Simulated Substation Network
– Vagrant used to create a minimal test

network of virtual machines
– Separate machines for virtual device,

logging endpoints, and simulated at-
tacker

– IDS rules tested with live traffic
– Inter-system traffic and behavior moni-

tored in real time


