
May1601 Final Report

Submitted by

Jonathan Osborne Team Leader
Nik Kinkel Key Concept Holder
Korbin Stich Key Concept Holder
Daniel Borgerding Communication Leader
Jonathan Hope Webmaster
Aashwattch Agarwal Communication Leader

Under the guidance of
Dr. Doug Jacobson

Prepared for
Alliant Energy

College of Engineering
Iowa State University of Science and Technology

Ames, Iowa
Spring Semester 2016

Contents

1 Project Overview 1
1.1 Purpose . 1
1.2 Background . 1

1.2.1 Problem . 2
1.2.2 Solution . 2

1.3 Deliverables . 2
1.3.1 Hardware . 3
1.3.2 Software . 3

2 Design and Implementation 4
2.1 Honeypot Plugin Framework 4

2.1.1 Motivation . 4
2.1.2 Plugin Architecture . 4

2.2 Supporting System Design . 6
2.2.1 Design Considerations 7
2.2.2 System Components 7

3 Implementation 8
3.1 Honeypot Plugin Framework 8

3.1.1 Plugin Manager . 8
3.1.2 Honeypot Plugins . 8

3.2 Supporting System . 9
3.2.1 Configuration Management 9
3.2.2 Firewall . 9
3.2.3 Administration SSH Server 9
3.2.4 Intrusion Detection System 9

4 Testing 10
4.1 Unit Testing . 10
4.2 Integration Testing . 10

i

A Operational Manual 11
A.1 Hardware Assembly . 11
A.2 Deployment . 11

A.2.1 Install Requirements 11
A.2.2 Clone . 12
A.2.3 Initialization . 12
A.2.4 Deploy . 13

A.3 Plugin Configuration . 13
A.3.1 Plugin Manager . 14
A.3.2 Honeypot Plugins . 15
A.3.3 Logging Plugins . 16

B Alternatives 17
B.1 Hardware . 17
B.2 Architecture . 17

C Other Considerations 19
C.1 Late Additions . 19

ii

List of Figures

2.1 Honepot Plugin Architecture 5
2.2 System Components . 7

A.1 Example plugin manager configuration file 14
A.2 Example SSH plugin configuration file 15
A.3 Example HTTP/HTTPS plugin configuration file 15
A.4 Example DNP3 plugin configuration file 16
A.5 Example Splunk logger configuration file 16

iii

Section 1

Project Overview

1.1 Purpose
The purpose of this document is to act as a final deliverable for the ICS/S-
CADA Traffic Baseline and Honeypot project. A brief description of the
project will be provided, followed by a detailed layout of the final product
design, measures taken to ensure adequate testing, and guidelines concerning
proper implementation of the device. Appendices will be used to deliver a
step-by-step guide to device deployment and maintenance, as well as project
concerns and considerations that should be noted.

1.2 Background
Supervisory Control and Data Acquisition (SCADA) systems play a vital role
in maintaining and controlling critical infrastructure such as water treatment
plants, oil pipelines, HVAC Systems, and the power grid. The societal im-
portance of these services makes them a high-value target for well-funded,
highly-skilled adversaries who increasingly turn to digital and electronic at-
tack vectors, exploiting old and outdated protocols that were never designed
to be exposed to the public internet. Thus, rapid intrusion detection and
response is crucial for safeguarding SCADA networks.

A honeypot (a system designed to mimic a legitimate protocol, e.g. SSH,
coerce an attacker into interacting with it, and then report attacker activity
to an administrator) is an old and well-understood approach to detecting
network intruders.

1

1.2.1 Problem
Our client, Alliant Energy, requested many small, low-maintenance honeypot
systems, each capable of speaking multiple network protocols (both SCADA
and non-SCADA), able to log to many different backends, and able to sniff
local network traffic for anomalies, to place inside each of their 28 electrical
substations.

Unfortunately, many mainstream honeypot implementations have a num-
ber of problems that make them unsuitable for deployment in Alliant’s sub-
stations, including:

• Unsafe Languages: Many existing honeypots rely on code written
in languages without memory- or type-safety, unacceptable for a high-
security environment.

• Single-Protocol: Most honeypots are designed to speak only a single
protocol.

• Complex Deployment: Open source honepots are generally not de-
signed to be deployed, updated, and configured en masse.

• Expensive Hardware: Commercial honeypots are too expensive to
place in multiple locations across many subnets.

1.2.2 Solution
We designed a honeypot plugin framework to enforce high-security process
isolation, extreme extensibility, and easy and comprehensive testing. The
system is tailored to run on Raspberry Pi consumer hardware and is cheap
enough to buy in quantity, while still being powerful enough to run an In-
trusion Detection System (IDS) capable of watching local network traffic for
anomalies. Finally, we delivered a set of configuration management utilities
that allow our client to deploy to many different locations and update all
devices in a single-step.

1.3 Deliverables
The final deliverable of this project will be based upon the assumption that
the client will be required to provide the following hardware per honeypot
device deployed.

2

1.3.1 Hardware
• RaspberryPi Model 2 B

• 8GB MicroSD card

• 2.5A Micro USB power supply(5ft cable) with noise filter.

• USB 3.0 network adapter to RJ45 Ethernet connection.

• RaspberryPi plastic hardcase.

• Appropriate ethernet connection

1.3.2 Software
All code necessary to deploy our device can be cloned from the git repository
address: https://github.com/Senior-Design-May1601/config.

An iso image of the full system deployed on a Raspbian operating sys-
tem will also be provided, however it is highly recommended that the client
deploy devices via Ansible as to streamline the process and apply proper
configurations per device.

3

https://github.com/Senior-Design-May1601/config

Section 2

Design and Implementation

2.1 Honeypot Plugin Framework

2.1.1 Motivation
Our decision to implement a plugin framework for honeypots instead of a
static, monolithic program tailored exactly to our client’s current needs comes
from three key observations:

1. Overall client needs evolve and change over time

2. Each substation may require a different set of honeypot protocols

3. Large programs implementing many different network protocols become
very hard to reason about and test

By using a modular, extensible architecture from the beginning, we are
able to react quickly to evolving client specifications as well as lay the ground-
work for future, proprietary or site-specific extensions to be made.

2.1.2 Plugin Architecture
Figure ?? shows how honeypot plugins, logging modules, and the core man-
ager fit together in a single system.

4

SSH

HTTP

HTTPS

DNP3

Splunk

Syslog

Text File

S3

Controller

Custom
Honeypot

Custom
Logger

Application-specific alerts broadcasted to loggers

Figure 2.1: Honepot Plugin Architecture

What is a Plugin?

There are two types of recognized plugins: Honeypot Plugins and Logging
Plugins.

Honeypot plugins are small, isolated programs that simply import our
logging library (which uses exactly the same interface as the standard Go
logging library) and log any events that should be broadcast as alerts (for
instance, an attempted SSH login).

Logging plugins must implement a single-function interface that specifies
the behavior that should take place when the logger receives an alert (for
instance, writing the byte string to a text file).

Each plugin is responsible for implementing its own, protocol-specific
functionality (for instance, an HTTPS honeypot plugin needs to do TLS
protocol negotiation and handshakes as well as respond to HTTP requests
on its own, and a Splunk logging plugin needs to coordinate with the remote
endpoint independently), and the only interface to the rest of the system is
through the imported logging module for honeypot plugins and the single-
function interface for logging plugins.

Plugin Management

The plugin manager runs as a system daemon and is responsible for start-
ing, stopping, and managing all plugins as child subprocesses. The plugin
manager receives alerts from honeypot plugins and broadcasts them to each
logging plugin. The plugin manager also centralizes error messages and re-
porting and provides a single interface to configure the system.

5

Plugin Communication

Plugins communicate via an asynchronous message-passing protocol which
uses Go’s RPC library under the hood. When honeypot plugins call an
imported logging function, an asynchronous RPC call is made behind the
scenes to the plugin manager, using a connection that is setup and initiated
when the logger is created.

Logger plugins also receive messages over via the same message-passing
protocol, and the interface they implement is actually the method called via
asynchronous RPC.

The Default Plugin Set

Along with the plugin architecture itself, our deliverable includes a set of
default plugins tailored to our client’s current needs. This set includes the
honeypot plugins for the following protocols:

• SSH: the SSH plugin simulates and SSH protocol information and logs
metadata about the attempted login

• HTTP: the HTTP plugin presents a fake login page and harvests at-
tacker credential

• HTTPS: similar in practice to the HTTP plugin, the HTTPS plugin
adds TLS to the fake login page

• DNP3: the DNP3 plugin collects DNP3 SCADA commands and logs
attempted attacker activity

The default plugin set also includes the following logging plugins:
• Splunk: the Splunk logger logs alerts to a remote Splunk instance

using the Splunk Event Collector API

• TextFile: the text file logger logs alerts to a local text file

• Syslog: the Syslog logger logs syslog alerts on the device

2.2 Supporting System Design
The supporting system is essentially every device component that is not part
of the honeypot plugin framework. For instance: the operating system itself,
particular critical software components (e.g. iptables), and the intrusion
detection system. Figure 2.2 shows how system components fit together.

6

Network
Traffic

Incoming
Traffic

Sniffed
Traffic

Public
Interface

Snort
IDS

SSH
Admin

Honeypot
Framework

Snort Alerts

Honeypot Alerts

Figure 2.2: System Components

2.2.1 Design Considerations
The supporting system is designed to accomodate our client’s particular
needs as well as minimize the amount of ongoing maintenance and system-
specific work that must be performed.

We use the Raspbian operating system, designed for Raspberry Pi’s, as
the base system. All other components are designed to stay as close to the
upstream packages as possible (minimize or eliminate custom modifications).

2.2.2 System Components
The supporting system has the following critical components, described in
more detail in the Implementation Section:

1. Firewall

2. (Real) SSH server for ongoing maintenance

3. Intrusion Detection System

7

Section 3

Implementation

3.1 Honeypot Plugin Framework

3.1.1 Plugin Manager
The honeypot plugin manager is implemneted using the Go programming
language. Communication with plugins is done via the Go standard library’s
RPC module.

3.1.2 Honeypot Plugins
Each honeypot plugin is also implemented in the Go programming language.

SSH Plugin

The SSH plugin uses Go’s crypto/ssh package to simulate legitimate SSH
protocol handshakes with two custom callbacks that log alerts when an at-
tacker attempts either a password-based login or a key-based login.

HTTP Plugin

The HTTP plugin uses Go’s net/http package to implement a standard
HTTP server, along with Go’s html/template package to provide site- and
device-specific template configuration for the fake login page.

HTTPS Plugin

Along with the packages used for the HTTP plugin, the HTTPS plugin
also uses Go’s http.ListenAndServeTLS module to handle TLS protocol
negotiation and operation.

8

DNP3 Plugin

The DNP3 plugin uses a custom implementation of DNP3 protocol parsing.
In order to accomodate the many different types of DNP3 protocol mes-
sages, a SecureAuth challenge is sent in response to any incoming command
message, and the challenge is always rejected. This allows a full DNP3 mon-
itoring implementation without needing to implement any of the protocol
state or controlling logic.

3.2 Supporting System

3.2.1 Configuration Management
The Ansible configuration management system is used to provide an auto-
mated means of configuring, updating, and deploying many simultaneous
device installations. A set of configurable Ansible “roles” is included as part
of the final deliverable that allow our client to tailor the system to their
specific needs automatically.

3.2.2 Firewall
The device firewall uses the standard linux iptables package.

3.2.3 Administration SSH Server
The core device administration server uses the standard OpenSSH server im-
plementation.

3.2.4 Intrusion Detection System
The intrusion detection system included on the device uses the industry-
standard Snort IDS, along with a minimal set of initial rules tailored to the
client’s operating environment. Future changes and and ruleset adjustments
for the IDS can be made using the Ansible configuration mangement system
described above.

9

Section 4

Testing

4.1 Unit Testing
Unit tests are written to evaluate the performance of a specific module or
function. Go programming language has support for running automated
tests through it’s testing package1. On plugins, unit tests can be written to
evaluate the performance of triggered events. For instance, does the dnp3
plugin properly parse all headers available on connection? On loggers, testing
functions can be used to identify any faults that occur when reporting an
event. While useful for the proccess manager that regulates extensions, the
efficacy of unit testing is minimal in the case of plugins and loggers because
of the dependency that each have with the core.

4.2 Integration Testing
Integration testing was performed using Vagrant2. The service provides a
reproducible environment for deployment and network emulation. Specific
to this project, Vagrant was used to provision two virtual machines. The first
virtual machine serves as an external Splunk instance which is the reporting
system used by Alliant Energy. The second virtual machine executes the
Ansible provisioning to download, install, configure and start all plugins and
loggers. The important thing to note is that Vagrant is actually deploying
the honeypot to a new Debian instance every time. Therefore, we are em-
ulating the installation process across multiple Raspberry Pi devices. Both
virtual machines are given separate addresses on a subnet. This allows the
verification of events and alerts across an actual network.

1https://golang.org/pkg/testing
2https://www.vagrantup.com

10

https://golang.org/pkg/testing
https://www.vagrantup.com

Appendix A

Operational Manual

A.1 Hardware Assembly
After purchasing the hardware, the assembly of the Raspberry Pi follows the
standard vanilla installation instructions outlined by the Raspberry Pi Foun-
dation at: https://www.raspberrypi.org/documentation/installation/
installing-images/README.md.

The device should be connected to the local ethernet twice, once using
the Pi’s on board ethernet connection, and a second time using the USB
network interface adapter for the IDS connection. Remember to catalog the
host name(IP Address) of each device for the next phase of this manual. Also
note that these devices will need network connectivity in order to download
software/packages during the deployment phase or upon administering up-
dates.

A.2 Deployment

A.2.1 Install Requirements
The machine which will deploy/configure/maintain these honeypot devices
will be required to have either an OS X or Linux operating system with the
following packages installed. These packages can be installed using pack-
age managers like pipo r apt which are often installed by default on these
operating systems.

The system should have the following minnimum software version.

• git(1.9.1)

• ansible(2.0.2)

11

https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

• sshpass(1.05)

A.2.2 Clone
Once all pi devices are connected to there subsequent network environments
and given local IP addresses, the installer can cd to an appropriate work
directory and then use git to clone the repository: https://github.com/
Senior-Design-May1601/config.

1 $ cd /home/user/ICS - Honeypot
2 $ git clone https :// github .com/Senior -Design - May1601 /

config

A.2.3 Initialization
After cloning the repository,cd to the new directory and update permissions
on the init file:

1 $ cd config / ansible
2 $ chmod +x init

This shell script will do a number of things. First it will create 2 new
directories

• hosts: stores ansible inventory files

• keys: stores deployment SSH keys

Next the script will create a series of variables that will define the honeypot
devices host name/login information. The default deployment user name
is deploy. Passwords for root and deploy will be generated using random
characters. The script will prompt the user for an administrative IP address.
This address should be the one of the current system which will deploy and
maintain honeypot devices. After deployment, no other systems aside from
the current host machine will be able to connect to honeypot devices via
SSH.

The script will also prompt the user for an administrative email address
which if entered will be used by the Apticron package on each machine to

12

https://github.com/Senior-Design-May1601/config
https://github.com/Senior-Design-May1601/config

notify administration upon pertinent operating system security updates for
the device. This email will not be used for general logging.

A Splunk HTTP-EVENT-COLLECTOR token value will need to be pro-
vided next, which will enable the device to log to an administrative Splunk
server. Finally the script will encrypt all the data entered above into a
secrets.yml variable file via ansible-vault which will be stored in vars/se-
crets.yml. The user should provide a password for this file which will
be needed to run ansible playbooks in the future. Viewing the contents
of this file or modifying it can be done by using the ansible-vault command
as needed.

A.2.4 Deploy
With everything configured, the last step in deploying any number of hon-
eypot devices is to simply run command

1 $ ansible - playbook -i hosts/hosts bootstrap - playbook .yml

This command will simultaneously bootstrap and start any number of
devices at various locations by downloading necessary packages, applying
system configurations, starting firewalls/IDS systems, and starting the core
honeypot service. Be warned this will take some time as there are a small
number of packages that need to be downloaded. Once the playbook has
completed all devices will be setup as honeypot devices and will no longer
require full network access until updates are required.

A.3 Plugin Configuration
Each honeypot has a simple configuration file it uses to control behavior
and plugin-specific settings. A sample configuration file, with a commented
explanation for each option, is included in this appendix. These sample
configuration files, to be used as examples, are also included in the software
deliverable.

13

A.3.1 Plugin Manager

1 [MasterConfig]
2 # full path to the local error and event log
3 Logfile = "/path/to/log/file"
4
5 # each honeypot plugin gets an entry like this
6 [[PluginConfig]]
7 # the name of the plugin that should appear in log

messages
8 Name = "plugin"
9 # full path to the plugin executable
10 Path = "/path/to/plugin"
11 # arguments the plugin should be started with
12 Args = ["-config", "/path/to/config -file"]
13
14 # each logging plugin gets an entry like this
15 [[LoggerConfig]]
16 # the name of the logger that should appear in local

log messages
17 Name = "logger"
18 # full path to the logger executable
19 Path = "/path/to/logger"
20 # arguments the logger should be started with
21 Args = ["-config", "/path/to/config -file"]

Figure A.1: Example plugin manager configuration file

14

A.3.2 Honeypot Plugins
SSH

1 # address fake SSH server should listen on
2 Address = " localhost "
3 # port fake SSH server should listen on
4 Port = 8022
5 # full path to SSH Host private key that should be

used
6 Key = "/path/to/ private /key"

Figure A.2: Example SSH plugin configuration file

HTTP/HTTPS

1 # address the HTTP/HTTPS server should listen on
2 Host = " localhost "
3 # full path to TLS cert to use
4 Cert = "tls/ dummy_cert .pem"
5 # full path to TLS private key to use
6 Key = "tls/ dummy_key .pem"
7 # HTTP port to listen on
8 HTTPPort = 8080
9 # HTTPS port to listen on
10 HTTPSPort = 8443
11 # full path to template used for login page
12 LoginTemplate = "/path/to/ templates /login.html"

Figure A.3: Example HTTP/HTTPS plugin configuration file

15

DNP3

1 # address DNP3 plugin should listen on
2 Address = " localhost "
3 # port plugin should listen on for incoming DMP3

connections
4 Port = 20000

Figure A.4: Example DNP3 plugin configuration file

A.3.3 Logging Plugins
Splunk

1 # each remote logging destination should be in an
Endpoint block

2 [[Endpoint]]
3 # the remote endpoint host
4 Host = " localhost "
5 # the remote endpoint event collector point
6 Port = 8088
7 # the remote endpoint event collector url
8 URL = "/ services / collector "
9 # auth token to be included with each message
10 AuthToken = "12345"
11 # OPTIONAL : if included , use this set of root CAs

instead of the system
12 # default . useful when using self -signed TLS

certificates
13 RootCAs = ["/path/to/ca/cert.pem"]

Figure A.5: Example Splunk logger configuration file

16

Appendix B

Alternatives

B.1 Hardware
When coming up with the initial design for Alliant’s low interaction honeypot
there were two viable options. The first option was to build a device using
standard computer hardware. The second was to use a prefabricated single-
board computer such as a Raspberry Pi. Both options are viable for creating
a functional honeypot with pros and cons associated with each. A custom
built device would contain more processing power, more RAM and have a
high degree of customization. The drawback with a custom design is that
they are more expensive and not as easily replaceable as a prefabricated
device. This was the main draw towards a Raspberry Pi. These devices
are relatively cheap, and offer the easy setup and installation required for
deploying multiple remote machines. Ultimately the decision came down to
what was the simplest solution that would allow for the use of SSH, HTTP,
HTTPS, DNP3 an intrusion detection system and a means of logging. Since
all of the services running on the device are minimal versions it is ultimately
unnecessary to create a custom machine with extended processing power and
RAM. A single board computer such as a Raspberry Pi is more than capable
of accomplishing the required tasks for less than half the cost of a custom built
device while also requiring less manpower to setup and maintain. For these
reasons A Raspberry Pi was chosen as the platform of choice for Alliant’s
SCADA honeypot system.

B.2 Architecture
During the first iterations of this project, the system architecture was singled-
tiered. Initially, we intended to create one monolithic application. As we

17

started to get further into development, we realized that many parts of this
project were actually rather orthogonal to one another. At this point, a de-
sign idea was explored that pointed the project in the direction of our current
plugin framework. This plugin framework became incredibly pragmatic as we
continued development. The first reason this framework is ideal is because
it greatly increases the security of the system. With the plugins running
as separate processes, they are completely isolated from one another. This
isolation also means they will be in completely different address space, which
is a major benefit should there be any vulnerability or bug in any individual
plugin. The other reason this framework is very fitting for this project is
that it allows us to be highly extensible. With these plugins, should our
client want to add some function, all they need to do is implement the main
interface and they are immediately able to add plugins for new protocols or
logging backends. The progression from our initial design to this plugin ar-
chitecture has become a huge benefit not only to us during development and
testing, but it will also be decidedly valuable for our client going forward.

18

Appendix C

Other Considerations

C.1 Late Additions
Since the first day of this project we knew we would eventually be handling
some SCADA protocol(s). Throughout development our client was often
unsure what protocols were necessary, but told us they would let us know as
soon as they could. In mid-March, we finally received word that we needed
to be using the DNP3 protocol. This was initially somewhat alarming as
we had no previous knowledge of the protocol, and we only had a month
and a half to learn about it and implement it. There were also some issues
regarding specifics of the protocol as we needed to make sure we were exactly
matching our client’s. Luckily, with the aforementioned plugin framework,
we were able to rapidly implement the requested functionality after learning
the necessary pieces of the protocol. Adding significant functionality so late
in the development process can be rather detrimental to a project, however
we were able to complete the work requested and it is currently implemented.

The other late addition was not a technical one. Halfway through the
project, we were given an additional team member. This initially seemed
really beneficial as we had plenty of work that needed to get done. Luckily,
Brooks’ Law did not hold in our circumstance. There was plenty of trying
to get our new member up to speed on not only what our project was about,
but also the technical details of it. This addition was surely unexpected,
but it definitely gave our team an idea of potential outcomes given personnel
changes during a project.

19

	Project Overview
	Purpose
	Background
	Problem
	Solution

	Deliverables
	Hardware
	Software

	Design and Implementation
	Honeypot Plugin Framework
	Motivation
	Plugin Architecture

	Supporting System Design
	Design Considerations
	System Components

	Implementation
	Honeypot Plugin Framework
	Plugin Manager
	Honeypot Plugins

	Supporting System
	Configuration Management
	Firewall
	Administration SSH Server
	Intrusion Detection System

	Testing
	Unit Testing
	Integration Testing

	Operational Manual
	Hardware Assembly
	Deployment
	Install Requirements
	Clone
	Initialization
	Deploy

	Plugin Configuration
	Plugin Manager
	Honeypot Plugins
	Logging Plugins

	Alternatives
	Hardware
	Architecture

	Other Considerations
	Late Additions

