
May1601 Design Document

Submitted by

Jonathan Osborne Team Leader
Nik Kinkel Key Concept Holder
Korbin Stich Key Concept Holder
Daniel Borgerding Communication Leader
Jonathan Hope Webmaster

Under the guidance of
Dr. Doug Jacobson

Prepared for
Alliant Energy

College of Engineering
Iowa State University of Science and Technology

Ames, Iowa
Fall Semester 2015

Contents

1 Introduction 1
1.1 Project Statement . 1
1.2 Background . 1
1.3 Deliverables . 2
1.4 Specifications . 2

2 System Level Design 4
2.1 System Requirements . 4

2.1.1 Functional Requirements: 4
2.1.2 Non-Functional Requirements: 5

2.2 Functional Decomposition . 5
2.2.1 Parts Breakdown: . 5

2.3 System Analysis . 7
2.4 Block Diagrams . 8

3 Specifications 9
3.1 I/O Specification . 9

3.1.1 Public Interface . 9
3.1.2 Traffic . 11
3.1.3 Administration . 12

3.2 Interface Specifications . 12
3.2.1 Administration Interface 12
3.2.2 Public Interface . 12
3.2.3 Splunk Interface . 13
3.2.4 Promiscuous Network Interface 14

3.3 Hardware/Software Specifications 14

4 Testing and Modeling 15
4.1 Simulations and Modeling . 15
4.2 Implementation Issues and Challenges 15
4.3 Testing Procedures and Specifications 16

i

5 Conclusion 17

A Full HTTPS Alert 18

ii

List of Figures

3.1 General Alert JSON Format 13

A.1 A sample Splunk alert . 18

iii

List of Tables

3.1 SSH Honeypot Outputs . 10
3.2 HTTP Honeypot Outputs . 10
3.3 HTTPS Honeypot Outputs . 10
3.4 SCADA Honeypot Outputs 10
3.5 Free Software Tools Used . 14

iv

Section 1

Introduction

The purpose of this document is to outline the specifications and validations
for the ICS/SCADA Traffic Baseline and Honeypot project. This document
will provide detailed systems level analysis and layout of the various compo-
nents included in the proposed product, as well as descriptive explanations of
the testing and verification methods used to show that this design will meet
the specs put forth by the client. Should the need arise, this document may
be used by the client in the future to better understand the product’s con-
struction and how to implement/modify the product after the design team
has finished.

1.1 Project Statement
The goal of this project is to create a standalone security device that can
be placed in an industrial network to monitor traffic, looking for security-
related deviations, and act as a low interaction Honeypot. The design team
of May1601 will design this product according to the specifications put forth
below.

1.2 Background
With the dependency of electricity in the modern world, defending the func-
tionality and integrity of electrical power plants is integral to the preservation
and protection of our daily lives. Power plants handle extremely volatile re-
sources on a continuous round-the-clock basis. In order to keep these systems
up and running without fault they are monitored and controlled by numerous
components on a SCADA(Supervisory Control and Data Acquisition) net-
work. The integrity of this network is of vital importance. Normally these

1

networks are almost completely isolated from the outside world. However,
should an intruder somehow gain access to this network, it is important that
IT personal be notified immediately and that the cause of the intrusion be
identified and closed as soon as possible. This is where Honeypots come
in to play. Honeypots disguise themselves as systems on the SCADA net-
work, mimicking the behavior of other devices on the network while gathering
information. Ideally, attackers on the network connect to the Honeypot un-
knowingly and provide information to the IT staff allowing them to interpret
the source of the attack to determine the best course of action to mitigate
the risk.

1.3 Deliverables
The product which will be produced for this project will be packaged within
a Raspberry Pi microcontroller. We chose this device owing to its small phys-
ical footprint, small power consumption, its Linux based operating system,
and relatively practical hardware capabilities. This device was also much
more practical in terms of cost effective implementation, since up-scaling the
device or attempting to design and manufacture our own on such a small
scale would be costly and difficult to maintain long term. There will be (28)
units delivered at the end of this project. Each unit will include:

• RaspberryPi Model 2 B

• 8GB MicroSD card

• 2.5A Micro USB power supply(5ft cable) with noise filter.

• USB 3.0 network adapter to RJ45 Ethernet connection.

• RaspberryPi plastic hardcase.

• A Docker container which will run Ansible and contain all necessary
files for easy deployment.

1.4 Specifications
The device created by the May1601 design team shall be determined by the
following specification rule set:

• The device shall be capable of interaction via SSH, HTTP, and HTTPS
protocols.

2

• The HTTP and HTTPS protocols will be implemented via a fake login
page with key logger to record attempts.

• The device will record and transmit logs of all connection attempts
to Splunk server and alert essential personal upon any irregularities
such as increased ICMP traffic, port scans, or repeated URL attempt
requests.

• The device rule set will be malleable and easily updated in order to
accommodate future modifications to the system.

• The device will be low maintenance, low power, and capable of stan-
dalone functionality.

• There will be (28) devices deployed in (28) electrical substations.

• The device will not interfere or interact with any other devices on the
SCADA network.

3

Section 2

System Level Design

2.1 System Requirements
When requirements are gathered, it is important to break them up into "func-
tional" requirements, and "non-functional" requirements. It is necessary to
note the difference between the two, as they are key to understanding what
to develop, and how to accomplish a project. Functional requirements are
often thought of as a description of a system’s behavior, and non-functional
requirements elaborate performance characteristics of the system. In this sec-
tion, a list of functional requirements, as well as non-functional requirements
can be found.

2.1.1 Functional Requirements:
The Functional Requirements for the SCADA honeypot system are as follows.

• The system must interface with SSH, HTTP, and HTTPS protocols.

• The system will use a fake login page with key logger to record login
attempts.

• The system will have the ability to record logs of all connection at-
tempts.

• The system must contain a small intrusion detection system (IDS).

• The system must send alerts to administrative personnel upon detec-
tion irregularities that include, but are not limited to, increased ICMP
traffic, port scans, and repeated attempts to connect to URLs.

4

• A rule set must be included that allows for fine-tuning to accommodate
new or changed rules.

2.1.2 Non-Functional Requirements:
The Non-Functional Requirements for the SCADA honeypot system are as
follows.

• The system must be low maintenance.

• Must be a standalone device.

• Must be low power.

• Allow the support of no fewer than 28 devices.

• Have an up-time of no less than 99 percent.

2.2 Functional Decomposition
The SCADA honeypot to be built for twenty-eight of Alliant Energy’s power-
plant substation will have seven main components that allow it to mimic and
log potential attacks. These components consist of a public firewall, an SSH
server, a local webserver, an Ansible configuration manager, a log generator,
a localized intrusion detection system, and a centralized Splunk server. To
gain a more complete understanding of how data is processed through each
honeypot the next few paragraphs will describe the purpose and functionality
of each component.

2.2.1 Parts Breakdown:
Public Firewall

The public firewall also known as the public interface is one of two means of
ingress to the system. The firewall setup uses Linux IP tables to control the
flow of traffic to only information coming in on ports 22(SSH), 80(HTTP),
443(HTTPS) and port 2222. These ports are opened up for the reason that
they are the bare minimum required to run the services of the on-board
servers. This give the illusion that the honeypot is a secure service and
helps to obscure its true intentions to a malicious user. Note: The public
firewall does not interact with the second network interface card because it
is monitored directly by the Intrusion Detection System.

5

SSH Server

The SSH server, setup after the public facing firewall, is a mock server that
only simulates the authentication process of the SSH handshake. However
the server setup on the honeypot is designed to terminate the handshake once
the attempting user submits their credentials. The SSH server then sends
the username, password and other important information to the logger to be
processed into one cohesive log. The user is then denied access after a short
delay to mimic the background process of checking a database.

Local Web-server

The local web-server implemented in the design of the honeypot system works
in a similar fashion to the SSH server. Essentially if a malicious user attempts
to connect via HTTP/HTTPS they will be directed to the webserver. This
false web-server acts as an information gathering tool for Alliants admin.
Once inside the firewall the user will be presented with a login page that
asks for a username and password. Once entered the information is logged
and sent to the logger just like the SSH server. Upon entering their credential
the system will wait for a period of time before displaying that the credentials
entered are not accepted. This provides the ability to log multiple attempts
to access the system through HTTP/HTTPS.

Ansible Configuration Manager

The Ansible Configuration Manager is responsible for the setting up the
initial configuration of each type of server and also pushing any patches that
are necessary for the device to run properly. Because of this it will only
be accessible by network users with administrative rights. By using Ansible
we are able to setup a playbook that allows us to configure our device with
whatever protocols and services we want and then push all changes to every
device at once, remotely. This eliminates the need to physically go into every
machine and make changes on a machine to machine bases.

Log Generator

The log generating component of the honeypot takes information from the
all other components and formats them into an easy to read informative text
file that can be sent to a central sever in Alliant Energy’s data center. These
logs will consistently record normal network activity as well as any attacks
that occur on the device. The log format will be structured in accordance
with Alliant Energy’s choosing, but will contain information on the time the

6

attack was initiated, what type of attack it was, the username and password,
and other credentials. This data will then be relayed back to a Splunk server
at Alliant’s main data center for analysis.

Splunk Server

The splunk server is a component in Alliant’s data center that receives the
logs generated in the honeypot and analyzes them to determine if an attack
has happened according to Alliant’s definition of an attack. When an attack
does occur the splunk server will contact an administrator via email to alert
that an attack. From this information the administrators can make the
appropriate response to keep the network secure.

Bro Intrusion Detection System

The Bro IDS software listens on a separate network interface card than the
firewall and the other servers within the honeypot. This second NIC is un-
regulated and connects directly to the IDS, meaning that is allows all traffic
in. By doing this the honeypot will be able to capture any other attack-
/malicious traffic that occur within the SCADA system. However none of
the other systems will be compromised as a result of this because each NIC
is physically separate from each other and only connect at the logger which
works the same way for either system.

2.3 System Analysis
This project is routinely implemented in industry with high success rates.
Several software implementations of SCADA honeypots already exist in the
open source community. However, our implementation will be custom be-
cause the client has a secondary goal of including an IDS on the system.
Creating the honeypot software from scratch will minimize the resources re-
quired from the platform. This is important because the computer needs
to be a small standalone device. A Raspberry PI only has 1GB of RAM
for example and an IDS typically uses a lot of memory and process cycles.
Most risk can be mitigated with proper contingency planning. Installing an
IDS on a small platform such as a Raspberry PI poses a challenge. However
we believe that we can compress the IDS to only include core functions Al-
liant wants to reduce the resources required to run it. The overall honeypot
implementation carries a low risk of failure.

The overall plan to deal with unforeseen changes to the project is to run
all software implementations in a plugin architecture on a standard raspberry

7

pi with an additional network interface card added. The raspberry pi was
chosen for its’ adaptability and we are confident if any changes are needed the
pi will be able to handle them. The flexible plugin architecture was chosen
specifically because we cannot foresee all of the services Alliant might want
to run in the future. By making a plugin architecture with a default set of
plugins that were specifically asked for in the project we make it so Alliant
gets the services they want today, and the ability to easily update the devices
with new services in the future.

2.4 Block Diagrams

Bro IDS
Sniffed
Traffic

Microservice
Honeypot

Microservice
Honeypot

Microservice
Honeypot

Logger

Alerts aggregated and formatted for Splunk

Honeypot traffic forwarded
to localhost services

Public
Interface

Incoming
Traffic

Network
Traffic

To Splunk

8

Section 3

Specifications

3.1 I/O Specification
The system I/O is broken down into three sections, each with a particular
set of inputs and outputs:

1. Public Interface

2. Network Traffic

3. Administration

Note that all references to “Alert(s) to Splunk” are output of the form
summarized in Figure 3.1, along with context-specific details (for instance,
in the case of an attempted SSH login, the username and password supplied
by the attacker) as detailed in Appendix A.

3.1.1 Public Interface
The public interface is visible to normal actors on the internal network. It is
the only interface that attackers targetting the system will directly interact
with (attackers may indirectly interact with the system through sniffed net-
work traffic). Each honeypot service running on the system has a particular
set of inputs defined by the underlying protocol specification for the partic-
ular service, as well as dual outputs: one output to the attacker (protocol-
specific), and one output to the internal logging system (same format for all
services).

A summary of the protocol-specific inputs and outputs follows.

9

Traffic Type External Output Internal Logged Output
SSH Authentication Failed SSH Protocol Message Alert to Splunk
Non-SSH No Output No Output

Table 3.1: SSH Honeypot Outputs

Traffic Type Path External Output Internal Logged Output
HTTP /login Access Denied HTML Message Alert to Splunk
HTTP Any other path HTML Login Page Alert to Splunk
non-HTTP N/A No Output No Output

Table 3.2: HTTP Honeypot Outputs

Traffic Type Path External Output Internal Logged Output
HTTPS /login Access Denied HTML Message Alert to Splunk
HTTPS Any other path HTML Login Page Alert to Splunk
non-HTTPS N/A No Output No Output

Table 3.3: HTTPS Honeypot Outputs

Traffic Type External Output Internal Logged Output
Valid SCADA Protocol Access Denied Protocol Message Alert to Splunk
Invalid SCADA Protocol No Output No Output

Table 3.4: SCADA Honeypot Outputs

10

SSH Honeypot I/O

Input All TCP traffic on port 22 sent to the device. The SSH Honeypot
ignores non-SSH traffic on port 22.

Output The SSH Honeypot output is summarized in Table 3.1.

HTTP Honeypot I/O

Input All TCP traffic on port 80 sent to the device. The HTTP Honeypot
ignores non-HTTP traffic on port 80.

Output The HTTP Honeypot output is summarized in Table 3.2.

HTTPS Honeypot I/O

Input All TCP traffic on port 443 sent to the device. The HTTPS Hon-
eypot ignores non-HTTPS traffic on port 443.

Output The HTTPS Honeypot output is summarized in Table 3.3.

SCADA Honeypot I/O

This section summarizes the inputs and outputs for all SCADA honeypot
services. Note that particular SCADA protocols, while existing on the device
as different services, will have logically equivalent I/O, simply formatted to
conform to the particular SCADA protocol in use. SCADA honeypot I/O is
thus summarized as a group.

Input Any SCADA traffic sent to the device on an open port.

Output The SCADA Honeypot service output is summarized in Table 3.4.

3.1.2 Traffic
Traffic inputs to the system originate from two sources:

1. Sniffed network traffic

2. High port traffic to device

High port traffic to the device is traffic sent directly to an open port on
the device on which there is honeypot service running.

11

Sniffed Network Traffic

Input Sniffed network traffic is traffic observed by a network interface lis-
tening in promiscuous mode. This input is any ethernet traffic on the same
network as the device.

Output In all cases, output is either none or an alert logged to Splunk.
The decision of whether or not to send an alert is made by the system IDS.

3.1.3 Administration
Device administration is done through SSH. In all cases, administration traf-
fic consists of SSH protocol messages.

3.2 Interface Specifications
The system deals with four primary interfaces:

1. Administration Interface

2. Public Interface

3. Splunk Interface

4. Promiscuous Network Interface

A brief description of each primary interface follows.

3.2.1 Administration Interface
All administration is done over SSH. The administration interface is simply
an SSH server, listening on a different network than the public interface
(an internal wireless network, for instance). Administrators confirm access
with each device through Single Packet Authentication to validate they have
administrative rights to the device.

3.2.2 Public Interface
The public interface is the interface other users/hackers on the same network
as the device are presented with. This interface is a set of open ports, one
for each honeypot micro-service, and a handful of open high ports with no
services listening.

12

{ " event " : {
" source address " : s t r i n g
" source port " : int
" s e r v i c e type " : s t r i n g
" s e r v i c e type " : {

" s e r v i c e s p e c i f i c f i e l d A" : type ,
" s e r v i c e s p e c i f i c f i e l d B" : type ,
" s e r v i c e s p e c i f i c f i e l d N" : type ,

}
}

Figure 3.1: General Alert JSON Format

Since the device will be deployment to numerous (28) different locations,
and every device’s configuration may vary slightly (i.e. a different set of high
ports open, or a different SCADA protocol running), an exhaustive listing of
open ports is not practical or possible at this design stage (the list of open
ports is configurable by the client).

However, every device follows the same pattern: one open port per hon-
eypot microservice, and a handful of open high ports.

3.2.3 Splunk Interface
The Splunk interface is the interface the device uses to push alerts to admin-
istrators. The Splunk interface is interacted with through a REST API, the
details of which are specified by Splunk itself1.

The alerts themselves are formatted JSON2 using format specified in Fig-
ure 3.1, displayed in pseudo-JSON for convenience (format subject to change
based on continuing feedback from client).

Each "service type" entry is contains service-specific details (for instance,
an SSH alert may contain a username field, a password field, and a key field).
Additional data such as time of alert and originating device are handled
through metadata inherent in a Splunk REST API call.

See Appendix A for a full example of an alert from the HTTPS microser-
vice honeypot.

1http://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTprolog
2www.json.org

13

http://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTprolog
www.json.org

3.2.4 Promiscuous Network Interface
The final interface is the promiscuous network interface. This is simply a
network interface listening in promiscous mode, and the system’s IDS will
interpret the traffic and, if appropriate, log an appropriate alert to Splunk
using the REST API and an appropriate JSON format 3.1.

3.3 Hardware/Software Specifications
Hardware Specification

The following components make up the hardware specification:

• Raspberry Pi 2 Model B

• Quad-Core 900 MHz Processor

• 1 GB RAM

• 8 GB Micro SD Card

• 150 Mbps WiFi Adapter

• 2.5A USB Power Supply with Micro USB Cable

• CanaKit Raspberry Pi 2 Case

Software Specification

All system components implemented by this development team will be writ-
ten in the Go Programming Language3.

Table 3.5 summarizes the free software tools the system will use.

Tool Name Purpose Brief Description
Raspbian4 Operating System Debian GNU/Linux ARM port
Ansible5 Configuration and Setup Build and deployment automation
Docker6 Isolated microservice environment Linux container wrapper

Table 3.5: Free Software Tools Used

3https://golang.org/
4https://www.raspbian.org/
5http://www.ansible.com/
6https://www.docker.com/

14

https://golang.org/
https://www.raspbian.org/
http://www.ansible.com/
https://www.docker.com/

Section 4

Testing and Modeling

Testing for this project can be done through a combination of unit testing
and simulations. Four components are required to be tested. Ansible, SSH,
WebAuth, and the Splunk Logger. Ansible will require simulations to de-
termine if it can successfully install and configure multiple devices. SSH,
WebAuth, and Splunk will too require simulations to evaluate their ability
to handle several clients. In addition, these three components will require
unit testing to check for edge cases and invalid inputs.

4.1 Simulations and Modeling
An open source program named Vagrant will be used for simulations. Va-
grant allows for the quick creation of a virtual machine that can be used in
this instance to create a simulated device. Ansible will take a newly created
machine, run its’ installations, and start all services. Multiple machines can
be created by using a Vagrant file. Additional machines can be created in a
similar method with the ability to make SSH, HTTP, and HTTPS connec-
tions. This will simulate several clients attempting to communicate with our
Honeypot.

4.2 Implementation Issues and Challenges
The biggest challenge to testing is proper configuration of Vagrant and unit
testing for inputs and edge cases. Writing appropriate test code for that will
emulate client SSH, HTTP, and HTTPS calls will also be a challenge.

15

4.3 Testing Procedures and Specifications
The following list can be used as a procedural guideline for testing. Specifi-
cations can be described as all services performing their function correctly.

1. Install and configure Vagrant on the host machine.

2. Run Vagrant file to start Vagrant on several virtual machines.

3. Start Ansible to install services on VM. Ansible configures and installs
IP-Tables firewall, WebAuth, SSH, and Splunk logger

4. Start Vagrant on client VM’s.

5. Simulate HTTP, HTTPS, and SSH calls. SSH and Http calls are logged
to external Splunk server using JSON format. If there is an error, the
Splunk logger will cache the event.

6. Evaluate Splunk Logs for JSON formatting

7. Use GoLang Test package to build test cases for each unit in WebAuth,
Splunk, and SSH.

8. Run test cases

9. Evaluate results

16

Section 5

Conclusion

With the culmination of the concepts outlined in the above document, the
design team of May1601 believes that specifications outlined and agreed upon
between we the team and the client will be satisfied. With the inclusion of a
public interface, SSH and WEB servers, minimal IDS support, and event log-
ging we believe that our product will perform as advertised while maintaining
a minimized footprint in both cost and power consumption. By keeping our
product smaller and simple we believe our honeypot will prove a viable and
cost efficient alternative to commonly used open source honeypots. With
a planned prototype implementation by the end of the Fall 2015 semester,
there will be ample time in the Spring to modify the current design of the
product or implement further functionality which the client may desire.

17

Appendix A

Full HTTPS Alert

{ " event " : {
" source address " : " 1 2 7 . 0 . 0 . 1 " ,
" source port " : " 443 " ,
" s e r v i c e type " : "HTTPS" ,
" https " : {

"method " : "POST" ,
" path " : " / l o g i n " ,
" parameters " : {

" username " : " root " ,
" password " : " toor " ,

}
}

}

Figure A.1: A sample Splunk alert

Figure A.1 shows an example HTTPS alert. The alert is logged to
Splunk’s REST API in the listed JSON format using a POST request.

18

	Introduction
	Project Statement
	Background
	Deliverables
	Specifications

	System Level Design
	System Requirements
	Functional Requirements:
	Non-Functional Requirements:

	Functional Decomposition
	Parts Breakdown:

	System Analysis
	Block Diagrams

	Specifications
	I/O Specification
	Public Interface
	Traffic
	Administration

	Interface Specifications
	Administration Interface
	Public Interface
	Splunk Interface
	Promiscuous Network Interface

	Hardware/Software Specifications

	Testing and Modeling
	Simulations and Modeling
	Implementation Issues and Challenges
	Testing Procedures and Specifications

	Conclusion
	Full HTTPS Alert

