
CPRE/EE/SE 491

Senior Design

May1601 Project Plan

Submitted by

Jonathan Osborne Team Leader
Nik Kinkel Key Concept Holder
Korbin Stich Key Concept Holder
Daniel Borgerding Communication Leader
Jonathan Hope Webmaster

Under the guidance of
Dr. Doug Jacobson

Prepared for
Alliant Energy

Fall 2015

Industrial Control System
Honeypot and Traffic Monitor

Contents

1 Introduction 1
1.1 Project Introduction . 1
1.2 Background . 1
1.3 Overview . 3

2 Requirements 4
2.1 Overall Project Requirements 4
2.2 Proposed Solution . 4

2.2.1 Assessment of Proposed Solution 5
2.3 Validation and Acceptance Testing 6

3 Interface and System Description 8
3.1 Technical Approach . 8
3.2 Design Specification . 9

3.2.1 Layer 1: The External Interface 10
3.2.2 Layer 2: Low-Interaction Honeypot Micro-services . . . 11

3.3 Design and Implementation Stages 12
3.3.1 Stage 1 . 12
3.3.2 Stage 2 . 13
3.3.3 Stage 3 . 14

3.4 Functional Testing Plan . 15

4 Work Breakdown 16
4.1 Project Schedule . 16
4.2 Risks and Feasability Assessment 18
4.3 Cost Considerations . 18

5 Market Research 20

6 Conclusion 22

i

A Plugin Interface Details 23
A.1 Honeypot Plugin Interface . 23
A.2 Logger Plugin Interface . 23

ii

List of Figures

3.1 Simplified device internals . 11

4.1 Tentative Fall 2015 Project Schedule Overview 16
4.2 Tentative Spring 2016 Project Schedule 17

A.1 Honeypot microservice plugin interface 23
A.2 Logging plugin interface . 23

iii

List of Tables

2.1 Validation and Acceptance Testing Plan 7

3.1 Functional Testing Plan . 15

4.1 Fall 2015 Detailed Project Schedule 17
4.2 Spring 2016 Detailed Project Schedule 17
4.3 Summary of project components and implementation risk . . . 18
4.4 Summary of implementation costs 19

iv

Section 1

Introduction

1.1 Project Introduction

Cybersecurity is critical in maintaining the integrity and reliability of the
electrical infrastructure in our society. It is of utmost importance to ensure
that our electric grid is resilient since it is one of the most complex and
critical infrastructure which every sector depends upon. Recently, the roles
of the electrical power sector have shifted and now companies have a huge
responsibility in ensuring continued security and resilience of the power grid.

Attackers successfully compromised U.S. Department of Energy computer
systems more than 150 times between 2010 and 2014. These numbers are
expected to increase as computer systems begin to drive more of the power
grid. According the Scott White,a professor of Homeland Security and Se-
curity management at Drexel University, ”The potential for an adversary
to disrupt, shut down (power systems), or worse ... is real here.” As these
threats become more persistent, so must be the defense. Our project focuses
on on this defense of twenty-eight of Alliant Energy’s power substations, to
ensure any potential attacker is stopped as quickly as possible.

1.2 Background

With the dependency of electricity in the modern world, defending the func-
tionality and integrity of electrical power plants is integral to the preservation
and protection of our daily lives. Power plants handle extremely volatile re-
sources on a continuous round-the-clock basis. In order to keep these systems
up and running without fault they are monitored and controlled by numerous
components on a SCADA(Supervisory Control and Data Acquisition) net-
work. The integrity of this network is of vital importance. Normally these

1

networks are almost completely isolated from the outside world. However,
should an intruder somehow gain access to this network, it is important that
IT personal be notified immediately so the cause of the intrusion be identified
and closed as soon as possible.

An ongoing cyber-espionage campaign against targets in the energy sector
has given attackers the ability to sabotage operations against their victims.
These attackers, known as Dragonfly, have managed to compromise a number
of important organizations in the energy industry. Dragonfly follows in the
wake of Stuxnet, targeting industrial control systems (ICS). Dragonfly has
used trojanized software to deliver malware to nearly 2,800 known victims
thus far. Their aim, as far as it is known, has only been for espionage
purposes. However, should they have used the sabotage capabilities that
were made open to them, they could have caused damage and or large-scale
energy disruption in any of the many countries affected potentially costing
companies millions of dollars in lost revenue. Because of such attacks, it
is obvious that security for these kind of attempted breaches is decidedly
necessary.

This is where Honeypots come in to play. A honeypot is a dummy network
node. To an attacker, the honeypot looks like a poorly protected network;
in reality, this honeypot is a fake system that is isolated from the rest of the
organizations network and monitored closely by a security team. Honeypots
disguise themselves as systems on the network, mimicking the behavior of
other devices on the network while gathering information pertinent to iden-
tifying and nullifying the attack. Ideally, attackers on the network connect
to the Honeypot and unknowingly provide information to the IT staff allow-
ing them to interpret the source and content of the attack. The honeypot
is able to catch specific types of network attacks directed specifically at cer-
tain SCADA network attacks. However it is unable to catch everything. For
this reason honeypots are often combined with an intrusion detection system
(IDS).

Typically, an Intrusion Detection System is used to detect and alarm on
suspected intrusions. This is done using signature-based, statistical anomaly
based, or protocol analysis detection. These detection techniques allow IDS
systems to analyze network traffic and detect if there is any abnormal traffic
in the network such as ping sweeps, denial of service attacks, and viruses/-
worms etc. Any of these could potentially cause huge problems for a SCADA
network because a honeypot alone would be unable to address these issues.
Because of this it is advisable to combine the services of a honeypot and IDS
to provide a variety of network protection.

2

1.3 Overview

The system we had in mind to ensure the best possible security for Alliant
Energy would be to use a raspberry pi running with two separate network in-
terface cards (NICs). One NIC would facilitate all the inbound and outbound
traffic for all of the network and SCADA protocols we want to monitor. The
second NIC facilitates all traffic for the passive IDS system. This port only
listens for abnormal network traffic and reports it to the on-board logging
service before sending the desired information to proper network security
administrators. By using this design we fit the initial design criteria by im-
plementing a fully functioning honeypot and a small IDS system to catch
common types of attacks while also keeping the device cheap and easy to
maintain.

This system will be comprised of layered services. The outermost layer of
the device is external interface and the only point at which incoming network
traffic is accepted. Access is controlled by an IPTables rule set to provide
some resistance to attackers to help conceal the honeypot. What will be
visible is an interface that any attacker will be able to interact with. Should
an attacker attempt to login or exploit any of the services available through
the aforementioned interface, the system will send alerts to a logger and alert
the necessary IT staff.

The architecture in this system will be a flexible plugin architecture.
Each micro-service(HTTP, HTTPS, SSH, etc.) will function as a plugin, and
communicate with the logger plugin. This will create maximum flexibility
and allow the system to be highly extensible. This is ideal because should
an admin want to add a new micro-service or logging functionality, all they
need to do is write a small plugin and the system will be able to handle it
and begin running it.

A honeypot’s greatest value lies in its simplicity, it’s a device that is
intended to be compromised. This means that there is no production traffic
going to or from the device. Any time a connection is made to the honeypot,
it is most likely to be a probe, scan, or even attack. Any time a connection
is initiated from the honeypot, this most likely means the honeypot was
compromised. We believe our honeypot will prove a viable security product.
With increasing threats to not only the electrical sector, but the general
population as a whole. It is entirely necessary to do everything possible to
reduce or eliminate risks to an organization’s critical assets; this is what our
product aims to do.

3

Section 2

Requirements

2.1 Overall Project Requirements

The project we received from Alliant Energy was to create a low interaction
SCADA honeypot system for 28 of their power substations. The system
requirements for the device are as follows:

• Capable of interfacing with SSH, HTTP and HTTPS

• Have a fake login page with key logger to record login attempts

• Record logs of all connection attempts and send an alert to essential
personnel upon irregularities such as increased ICMP traffic, port scans,
and repeated attempts to connect to URLs.

• Rule set must be able to be fine-tuned to accommodate new/changed
rules.

• Potential for a small intrusion detection system.

• Must be a low maintenance standalone device.

• Must be low power.

• Each of the 28 substations must be equipped with one.

2.2 Proposed Solution

To house the necessary software to meet these expectations we have decided
to create a standalone system using a Raspberry Pi micro-controller. The

4

Raspberry Pi is our preferred choice of hardware since it is a small Linux
based micro-controller that is low in cost and power requirements. However,
we would like to have multiple network interface cards in order to have one
port for implementing SSH, HTTP/S and other services and one for our
intrusion detection system to listen on the network.

To accommodate Alliants needs we have decided to implement a plugin
architecture that allows for easy customization of the device to suit Alliant
Energy’s needs. By doing this any micro-service can be easily added and
removed based on the needs of the company. The current default plugins
are SSH and HTTP/S protocols. The SSH server plugin will serve as a false
gateway to inside the SCADA system. The illegitimate user will be able to
enter in a username and password at which time the SSH verification hand-
shake will be terminated, and a log will be filed with the relevant information
to be passed on to a network administrator for handling. The web server plu-
gin will offer similar services for HTTP and HTTPS. We have implemented
a fake login page visible to the unknown user. The login page will always
return invalid credentials and will be protecting nothing. Later, if we wish
to make the honeypot more interactive we could make the username and
password vulnerable to cracking methods and have it protect false data to
see how the user is tampering with it. This information will be gathered
and reported to the network administrator via an outside Splunk server in
Alliants central data center. The benefits of using a Splunk server is that
it is a tested and proven utility that performs the exact function necessary
to efficiently alert the necessary employees. The Splunk services are also
configurable to capture logs of ICMP ping sweeps, port scans and unwanted
URL attempts via an on-board intrusion detection system listening on an
open network interface card.

2.2.1 Assessment of Proposed Solution

A Raspberry Pi is an ideal component for the Alliant Energy Honeypot be-
cause of it’s small footprint and low power requirements. However the Rasp-
berry Pi only comes with one interface card. In order to properly implement
any kind of intrusion detection system it was necessary to add at least one
network interface card. The remedy for this is simply adding another after-
market USB NIC for the IDS to run on. Using this configuration any direct
attacks will go through the integrated NIC on the Raspberry Pi while while
indirect attacks such as ping sweeps will go through the the USB NIC.

Raspberry Pis also provide only 1GB of RAM which makes implementing
a detailed intrusion detection system very difficult. However we are of the
understanding that the IDS required by Alliant will only be used for simple

5

network attacks and should be able to run flawlessly on the Raspberry Pi
hardware.

Originally the design to accommodate the emulated services on the hon-
eypot were hard coded onto every device. This process works, but does have
the fatal flaw of being very difficult to change if the needs of Alliant change.
To account for any unforeseen changes to our design we decided to implement
the services in the form of plugins. The decision to update the device to a
plugin architecture is a choice we believe will make the honeypot much more
valuable to Alliant Energy. Switching to this new architecture allows Alliant
the ability to easily add and remove micro-services at will to fully customize
the device to perfectly suit their needs.

This plugin architecture works seamlessly with our original Splunk design
which will still receive logs generated on the device which constantly capture
device information. When an suspicious log is seen by the logger the log
is sent outbound to the Splunk server located in the Alliant’s data center
which will then be configured to alert essential IT personnel based on the
requirements Alliant sees fit.

2.3 Validation and Acceptance Testing

The testing requirements for each project requirement are summarized in
Table 2.1.

6

Component Testing Plan

SSH, HTTP, HTTPS Create scripts in GoLang using the test library to emu-
late several clients in addition to end to end testing.

Login Observe successful end to end testing of Splunk logging
with Base64 encoded username and password.

Logging Attempt a series of port scans through NMAP. Attempt
connections through SSH, HTTP and HTTPS. Validate
the logging format. Unit test caching ability.

Rule Set Try all permutations of potential rule sets and test them.

IDS Run all services with IDS and ensure the device is still
functional.

Device Check system requirements with client specifications.

Power Select a device that is suitable for the power constraints.
Potentially provide power of Ethernet capability

Equipment Monitor each device to ensure consistent uptime. Pro-
vide proper support for environmental factors

Table 2.1: Validation and Acceptance Testing Plan

7

Section 3

Interface and System
Description

3.1 Technical Approach

Our design and implementation strategy is guided by a handful of core tech-
nical principles.

Pluggable Architecture

To accommodate evolving client needs and future maintainability and utility,
our core deliverable will consist of a plug-in architecture for micro-services
and logging modules, along with a default set of honeypot plug-ins and a
Splunk logging module. By deploying a flexible plug-in architecture, addi-
tional logging back-ends and honeypot protocols can be integrated easily into
the full system.

Automation

Since our goal is to deploy many devices at different locations. We aim
to automate as much of the build and configuration process as possible.
Therefore, we will use Ansible 1 for easy remote setup for multiple devices.
We will also use Docker 2 to configure the individual honeypot microservices.
This setup will allow for simple and flexible device rollouts and updates.

1http://www.ansible.com/
2https://www.docker.com/

8

http://www.ansible.com/
https://www.docker.com/

Safe Languages

The device will only deploy honeypot services written in a safe3 language.
The core plugin architecture and the default plugins themselves will be

written in Go 4.

Honeypots Don’t Get Real Capabilities

Unlike medium- and high-interaction honeypots such as Kippo 5, our de-
fault honeypot microservices will not provide any real system capabilities.
Since the device will be running in an internal, protected environment, any
traffic should be considered an attack, and by only mimicking protocol ini-
tiation handshakes without providing actual program capabilities, we gain
some protection against unknown exploits.

Heavily Restrict Traffic

The device will heavily restrict both ingress and egress traffic to a set of
known, trusted servers. This will help mitigate any damage a compromised
microservice on the device can cause.

Disguise Administration Interface

Since we aim to both trick an attacker into believing the services running on
the device are legitimate, as well as restrict access to functional services on
the device, the administration interface will only be accessible using Single
Packet Authorization (SPA) 6.

3.2 Design Specification

The system has 2 primary layers of interfaces:

1. The External Interface, including components exposed to attackers and
administrators as well as the alert logging interface

2. The Internal Component Interface, through which honeypot services
communicate with each other

3Used informally here to mean languages that enforce type safety, memory safety, and
provide built-in or standard library mechanisms to write safe concurrent code.

4https://golang.org/
5https://github.com/desaster/kippo
6http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-madhat.pdf

9

https://golang.org/
https://github.com/desaster/kippo
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-madhat.pdf

Each layer has a particular interface for each component. See Figure 3.1
for a simplified diagram of the major device components.

3.2.1 Layer 1: The External Interface

The outermost layer of the device, the external interface, is the only point
at which incoming network traffic is accepted. Access is controlled by an
IPTables7 ruleset.

The Public Interface

The public interface, visible to anyone on the device’s network, is the interface
through which attackers interact with the various honeypot micro-sevices.
Since the micro-services are designed to run as unprivileged, isolated pro-
cesses, the honeypots themselves run on high, non-standard ports (e.g. 8022
for SSH and 8080 for HTTP).

Firewall rules forward traffic from the open, standard port (e.g. 22 for
SSH) to the high, non-standard port on local host where the actual honeypot
is listening.

The Administration Interface

Devices must be updated and individually configurable, so there needs to
be a way for administrators (or automated processes) to log in and perform
routine maintenance. However, the device also should not expose a public
SSH service with real login capabilities, and the honeypot SSH service can’t
be used for real system tasks.

Therefore, the device will use Single Packet Authorization to disguise
the administration interface, only opening the port for a single connection
to a particular internal IP address when presented with valid cryptographic
credentials.

The Promiscuous Interface

The device will run an IDS in order to pick up anomalies and attacks on the
greater internal network. The IDS will watch both incoming traffic to the
device as well as sniff traffic on the internal network through a promiscuous
interface.

7http://linux.die.net/man/8/iptables

10

http://linux.die.net/man/8/iptables

Bro IDS

Sniffed
Traffic

Microservice
Honeypot

Microservice
Honeypot

Microservice
Honeypot

Logger

Alerts aggregated and formatted for Splunk

Honeypot traffic forwarded
to localhost services

Public
Interface

Incoming
Traffic

Network
Traffic

To Splunk

Figure 3.1: Simplified device internals

3.2.2 Layer 2: Low-Interaction Honeypot Micro-services

We will provide a structured plug-in architecture that can run clearly defined
plug-ins for both arbitrary honeypot services as well as logging back-ends.
The plug-ins then run as isolated and unprivileged processes, using inter-
process communication over a well-defined protocol to communicate.

Each default honeypot micro-service plug-in set will be a low-interaction
honeypot, without full protocol capabilities for its emulated service and with
just enough functionality to discern:

• If a passive attacker is accessing the device

• If an active attacker is accessing the device

• What, if any, credentials an active attacker attempts to use

• Metadata about the attacker (IP address, MAC address, date/time,
etc.)

Honeypot Plug-in Architecture

Since the Go programming language does not support dynamic linking, and
thus compiling multiple plug-ins into a single executable becomes a messy

11

procedure, plug-ins themselves are implemented as independent programs
that each implement our structured plug-in interface. We define two types
of recognized plug-ins:

• Honeypot micro-service plug-ins

• Logging plug-ins

The plug-in architecture has two important interfaces.

A Structured Public Plugin Interface The plugin architecture defines
a small, public interface that all plugins must implement. See Appendix A.1
for details of the honeypot plugin interface and Appendix A.2 for details of
the logger plugin interface.

An IPC Mechanism Since plugins are isolated programs, they commu-
nicate using IPC (Inter-Process Communication). Specifically, plugins use
Go’s net/rpc library to communicate. Note however that this communica-
tion is handled transparently by the plugin architecture: plugin implementers
do not perform RPC (Remote Procedure Call) with other components. The
plugin controller itself performs RPC behind the scenes to coordinate plu-
gin execution and communication, and by implementing the standard plugin
interface, individual plugins get RPC behind the scenes for free.

3.3 Design and Implementation Stages

Design and implementation is broken up into three logical and somewhat
self-contained stages. Each stage encompasses a design component, an im-
plementation component, and an evaluation and testing component. Each
stage implements a particular subset of the desired functionality.

3.3.1 Stage 1

Design and Implementation Stage 1 will consist of a number of initial tasks,
design iterations, and prototyping. By completion of stage 1, the device will
have the core plugin architecture implemented, run a few small honeypot
microservices for common protocols, run a very minimal IDS rulset, and
have a minimal build automation procedure.

12

Core Plugin Architecture

The core plugin architecture, including all public interfaces and the RPC and
plugin registration mechanism, will be implemented in this early stage.

Minimal Build Automation

The device will be able to install all required dependencies automatically as
part of the deployment procedure.

HTTP/HTTPS Honeypot

The device will be running an HTTP/HTTPS honeypot with a fake login
page.

SSH Honeypot

The device will be running an SSH honeypot.

Pushing to Splunk

Both the HTTP/HTTPS honeypot and the SSH honeypot should be able
to push alerts to an external Splunk server using a default Splunk logging
plugin.

Open High Ports

At the client’s request, the device will have 3 open high ports listening for
incoming traffic.

Minimal IDS

An IDS will be used to push alerts to Splunk if any incoming traffic is seen
on the 3 high ports.

Unit Testing and Bug Fixes

Each component of Stage 1 will have full unit tests (where applicable).

3.3.2 Stage 2

Design and Implementation Stage 2 will extend the work done in Stage 1
and provide the first SCADA protocol honeypot microservice plugin.

13

Better Deployment Automation

In Stage 2, general system hardening, custom firewall setup, and IDS config-
uration will be automated as part of the deployment step.

Promiscuous Network Interface

A second network interface will be added to listen in promiscuous mode, used
by an IDS to pick up alerts from the greater internal network.

Custom IDS Configuration

The IDS will be configured to alert on domain-specific and network-specific
indicators, such as known energy-sector malware and internal ping sweeps.

OPC Honeypot

A honeypot microservice plugin will be implemented to emulate the OPC
protocol, the first SCADA protocol used on the device.

Unit Testing and Bug Fixes

Each component of Stage 2 will have full unit tests (where applicable).

3.3.3 Stage 3

Design and Implementation Stage 3 will finalize build automation, provide
a full integration testing suite, and allow time to add additional, custom
honeypot plugins to fit the client’s partcular needs at different deployment
sites.

Finalize Build and Deployment Automation

Build and deployment automation procedures and configuration needs will
be finalized with the client.

Single Packet Authorization

Stage 3 will integrate a small Single Packet Authorization module into the
device for remote administration.

14

Custom SCADA Protocols

By working closely with the client, any additional SCADA protocols needed
will be implemented using the plugin microservice pattern established in
design stages 1 and 2.

Unit Testing and Bug Fixes

Each component of Stage 3 will have full unit tests (where applicable).

Integration Testing

A full integration test suite will be written to test data flow through the
system and, when possible, work to verify system correctness.

3.4 Functional Testing Plan

Each primary device componenet will have both unit tests and, when ap-
plicable, integration tests. The device testing plan is specified in Table 3.1.
Note that all microservice testing procedures will follow the same strategy,
so they have been collapsed to one table entry.

Component Unit Tests Integration Tests
Plugin Architecture 7 Tested with plugins
Build Automation 7 Test deployment on virtual machines
IDS 7 Script attacks and verify alerting
Microservices 3 Attempt to login to active service
Logger 3 Verify logging correct on Splunk instance
Single Packet Authorization 3 Verify login succeeds/fails
Promiscuous Interface 7 Verify IDS receives traffic

Table 3.1: Functional Testing Plan

15

Section 4

Work Breakdown

4.1 Project Schedule

This section will outline the assumed tentative schedule for this Senior Design
project. Gantt charts will be used to show the progress of this project over
several revisions of this Project Plan and serve as a visual time line of the
projects accomplishments upon completion in May. The schedules below are
subject to change as the need arises.

Figure 4.1: Tentative Fall 2015 Project Schedule Overview

16

Task Start Duration End
Project Formation 2015-09-01 7 2015-09-08
Scope Development 2015-09-08 28 2015-10-06
Web Development 2015-09-25 45 2015-11-09
Emulation Debugging 2015-10-15 7 2015-10-22
Software Coding 2015-10-16 21 2015-11-9
Project Formation 2015-10-26 21 2015-11-16
Hardware Orders 2015-11-19 14 2015-12-3
Hardware Debugging 2015-11-25 14 2015-12-9
Final Presentation 2015-12-7 3 2015-12-10

Table 4.1: Fall 2015 Detailed Project Schedule

Figure 4.2: Tentative Spring 2016 Project Schedule

Task Start Duration End
Revisit Project 2016-01-12 7 2016-01-19
Discuss Possible New Features 2016-01-19 21 2016-01-19
Design Revision 2016-02-09 28 2016-03-08
Prototype Emulation V2 2016-03-08 21 2016-03-29
Debugging/Testing 2016-03-29 14 2016-04-12
Final Project Construction 2016-04-12 21 2016-05-03
Final Project Presentation 2016-05-03 3 2016-05-06
Product Delivery 2016-05-06 1 2016-05-07

Table 4.2: Spring 2016 Detailed Project Schedule

17

4.2 Risks and Feasability Assessment

This project is routinely implemented in industry with high success rates.
Several software implementations of SCADA honeypots already exist in the
open source community. However, our implementation will be custom be-
cause the client has a secondary goal of including an IDS on the system.
Creating the honeypot software from conception will minimize the resources
required from the platform. This is important because the computer needs
to be a small standalone device. A standard Raspberry PI only has 1GB of
RAM for example. An IDS typically uses a lot of memory and process cycles.
Most risk can be mitigated with proper contingency planning, as summarized
in Table 4.3.

Component Risk Contingency Plan
Web Server Honeypot Low Utilize open source nginx7

SSH Server Honeypot Low Use open source Kippo SSH8

Event Alerts Medium Switch from REST API to SMTP
SCADA Honeypot Medium Use open source Conpot9

Intrusion Detection System High Use IPTables Logging

Table 4.3: Summary of project components and implementation risk

Installing an IDS on a small platform such as a Raspberry PI poses a
significant challenge. Typically and IDS requires a lot of processing power
and memory consumption. However after confronting our client at Alliant
we have decided to go with an minimal IDS system to reduce resource con-
sumption.

4.3 Cost Considerations

Alliant Energy requires service in twenty eight different locations. Each lo-
cation will house a standalone minimal computer. The CanaKit Raspberry
PI was chosen because it is customizable and holds more memory than stan-
dard versions. An additional network interface will also be provided from an
external network adapter to accommodate the need for an IDS system. 4.4.

7https://www.nginx.com
8https://github.com/desaster/kippo
9http://conpot.org/

18

https://www.nginx.com
https://github.com/desaster/kippo
http://conpot.org/

Model Unit Cost Vendor Total Cost
Raspberry PI B+ $69.99 Plus Tax CanaKit $1960 Plus Tax10

USB 3.0 Gigabit Ethernet Adapter $16.99 Plus Tax Anker $476 Plus Tax11

Table 4.4: Summary of implementation costs

10http://www.amazon.com/CanaKit-Raspberry-Complete-Original-Preloaded/

dp/B008XVAVAW/ref=sr_1_1?s=pc&ie=UTF8&qid=1444258362&sr=1-1&keywords=

raspberry+pi
11http://www.amazon.com/Anker-Gigabit-Ethernet-Adapter-Supporting/dp/

B00NOP70EC/ref=sr_1_4?ie=UTF8&qid=1444258449&sr=8-4&keywords=usb+to+nici

19

http://www.amazon.com/CanaKit-Raspberry-Complete-Original-Preloaded/dp/B008XVAVAW/ref=sr_1_1?s=pc&ie=UTF8&qid=1444258362&sr=1-1&keywords=raspberry+pi
http://www.amazon.com/CanaKit-Raspberry-Complete-Original-Preloaded/dp/B008XVAVAW/ref=sr_1_1?s=pc&ie=UTF8&qid=1444258362&sr=1-1&keywords=raspberry+pi
http://www.amazon.com/CanaKit-Raspberry-Complete-Original-Preloaded/dp/B008XVAVAW/ref=sr_1_1?s=pc&ie=UTF8&qid=1444258362&sr=1-1&keywords=raspberry+pi
http://www.amazon.com/Anker-Gigabit-Ethernet-Adapter-Supporting/dp/B00NOP70EC/ref=sr_1_4?ie=UTF8&qid=1444258449&sr=8-4&keywords=usb+to+nici
http://www.amazon.com/Anker-Gigabit-Ethernet-Adapter-Supporting/dp/B00NOP70EC/ref=sr_1_4?ie=UTF8&qid=1444258449&sr=8-4&keywords=usb+to+nici

Section 5

Market Research

Currently, Industrial Controls Systems across the US are being probed by
potential threats every day. These SCADA networks can be extremely im-
portant to the US infrastructure and cannot be allowed to be tampered with
by foreign threats. However the current state of the industry is one where
equipment is often run for stringent, long term schedules with very little
down time allotted. This can make keeping a SCADA network up to date
difficult without opening access to the net. Concurrently, allowing any kind
of outside access puts the systems at greater risk. In order to find and pre-
vent these infiltrations, Honeypots are placed inside SCADA networks across
the US to gather information about potential attackers. these Honeypots are
quickly becoming an important part of any respectable SCADA network in-
frastructure.

There exist many standalone open source Honeypots which are avail-
able for easy implementation. One such system is Conpot, a low interaction
server side SCADA designed to be easily implemented and modified. By
default, this software runs a basic emulation of Siemens s7-200 CPU which
is a PLC(Programmable Logic Controller) which could likely be found in a
SCADA environment. The interactive protocols in this default install include
MODBUS, HTTP, SNMP and s7comm12. Another powerful Honeypot tool
available to industry is the HoneyD Daemon. This system created has the
capability to simulate thousands of customizable virtual hosts on a network
at the same time. It allows for the configuration of numerous services and in-
cludes advanced logging and adjustable network settings to prevent attackers
from discovering it’s true identity13.

Our group chose not to use open source Honeypot systems like CONPOT
or HoneyD on the basis that we desired to create our own system from

12http://mushorg.github.io/conpot/
13http://www.honeyd.org/general.php

20

http://mushorg.github.io/conpot/
http://www.honeyd.org/general.php

scratch. These products, though readily available to the public and our client,
would not have satisfied the minnimized hardware and software footprint
that our client desires. By keeping our system simple, well keep maintenance
time to a minimum while still providing useful information about potential
threats to IT personal. Our small standalone device will also allow for quick
streamlined installation and be kept out of the way of working personal.

21

Section 6

Conclusion

For this project our senior design group was assigned to design and implement
a SCADA honeypot system for 28 of Alliant Energy’s power plants. Each
individual system has the requirement of being low power, low maintenance,
able to track and log any access attempts thorugh SSH, HTTP, and HTTPS
as well as alert the proper administrators if any of these attempts were to
happen. In addition to the required specifications we decided to include the
possibility of implementing a simple intrusion detection system as requested
by Alliant’s security team.

To meet these features we have decided to implement our honeypot as a
Raspberry PI running a Debian OS. The Raspberry PI offers an ideal plat-
form for hosting the set of services needed to properly secure the honeypot
since it is highly customizable and provides the necessary storage and mem-
ory requirements. On the Raspberrry PI we will implement two seperate
servers, one for SSH and one for HTTP/S. Both of these will be stored on
a Docker image that will reinforce the standard that we have set for these
devices to be easy to update and control. These criteria are consistent with
how Alliant views illegitimate users attempting to access the device as well
as how they want their systems to communicate with it. By implementing
these services we will be able to secure each SCADA network in accordance
with Alliant Energy’s request and produce a quality product for our client.

22

Appendix A

Plugin Interface Details

The public plugin interface description follows for both recognized types of
plugins. Note that code is in Go.

A.1 Honeypot Plugin Interface

type Honeypot interface {
Star t () e r r o r
Stop () e r r o r
Restart () e r r o r

}

Figure A.1: Honeypot microservice plugin interface

A.2 Logger Plugin Interface

type Logger interface {
LogEvent (event ∗Event) e r r o r
LogEvents (events [] Event) e r r o r

}

Figure A.2: Logging plugin interface

23

	Introduction
	Project Introduction
	Background
	Overview

	Requirements
	Overall Project Requirements
	Proposed Solution
	Assessment of Proposed Solution

	Validation and Acceptance Testing

	Interface and System Description
	Technical Approach
	Design Specification
	Layer 1: The External Interface
	Layer 2: Low-Interaction Honeypot Micro-services

	Design and Implementation Stages
	Stage 1
	Stage 2
	Stage 3

	Functional Testing Plan

	Work Breakdown
	Project Schedule
	Risks and Feasability Assessment
	Cost Considerations

	Market Research
	Conclusion
	Plugin Interface Details
	Honeypot Plugin Interface
	Logger Plugin Interface

